$$$3 u + 4$$$的导数
您的输入
求$$$\frac{d}{du} \left(3 u + 4\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{du} \left(3 u + 4\right)\right)} = {\color{red}\left(\frac{d}{du} \left(3 u\right) + \frac{d}{du} \left(4\right)\right)}$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{du} \left(4\right)\right)} + \frac{d}{du} \left(3 u\right) = {\color{red}\left(0\right)} + \frac{d}{du} \left(3 u\right)$$对 $$$c = 3$$$ 和 $$$f{\left(u \right)} = u$$$ 应用常数倍法则 $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$:
$${\color{red}\left(\frac{d}{du} \left(3 u\right)\right)} = {\color{red}\left(3 \frac{d}{du} \left(u\right)\right)}$$应用幂法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{du} \left(u\right) = 1$$$:
$$3 {\color{red}\left(\frac{d}{du} \left(u\right)\right)} = 3 {\color{red}\left(1\right)}$$因此,$$$\frac{d}{du} \left(3 u + 4\right) = 3$$$。
答案
$$$\frac{d}{du} \left(3 u + 4\right) = 3$$$A
Please try a new game Rotatly