$$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ 关于 $$$r$$$ 的导数

该计算器将求 $$$3 e^{- 4 r} \sin{\left(3 \theta \right)}$$$ 关于 $$$r$$$ 的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)$$$

解答

$$$c = 3 \sin{\left(3 \theta \right)}$$$$$$f{\left(r \right)} = e^{- 4 r}$$$ 应用常数倍法则 $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$

$${\color{red}\left(\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\right)} = {\color{red}\left(3 \sin{\left(3 \theta \right)} \frac{d}{dr} \left(e^{- 4 r}\right)\right)}$$

函数$$$e^{- 4 r}$$$是两个函数$$$f{\left(u \right)} = e^{u}$$$$$$g{\left(r \right)} = - 4 r$$$的复合$$$f{\left(g{\left(r \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dr} \left(f{\left(g{\left(r \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dr} \left(g{\left(r \right)}\right)$$$

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(e^{- 4 r}\right)\right)} = 3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dr} \left(- 4 r\right)\right)}$$

指数函数的导数为 $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$

$$3 \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dr} \left(- 4 r\right) = 3 \sin{\left(3 \theta \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dr} \left(- 4 r\right)$$

返回到原变量:

$$3 e^{{\color{red}\left(u\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right) = 3 e^{{\color{red}\left(- 4 r\right)}} \sin{\left(3 \theta \right)} \frac{d}{dr} \left(- 4 r\right)$$

$$$c = -4$$$$$$f{\left(r \right)} = r$$$ 应用常数倍法则 $$$\frac{d}{dr} \left(c f{\left(r \right)}\right) = c \frac{d}{dr} \left(f{\left(r \right)}\right)$$$

$$3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(- 4 r\right)\right)} = 3 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(- 4 \frac{d}{dr} \left(r\right)\right)}$$

应用幂法则 $$$\frac{d}{dr} \left(r^{n}\right) = n r^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dr} \left(r\right) = 1$$$

$$- 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(\frac{d}{dr} \left(r\right)\right)} = - 12 e^{- 4 r} \sin{\left(3 \theta \right)} {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$

答案

$$$\frac{d}{dr} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) = - 12 e^{- 4 r} \sin{\left(3 \theta \right)}$$$A


Please try a new game Rotatly