$$$2 - \frac{1}{t^{2}}$$$的导数
您的输入
求$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2\right) - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)}$$应用幂次法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,其中 $$$n = -2$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)} + \frac{d}{dt} \left(2\right) = - {\color{red}\left(- \frac{2}{t^{3}}\right)} + \frac{d}{dt} \left(2\right)$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(2\right)\right)} + \frac{2}{t^{3}} = {\color{red}\left(0\right)} + \frac{2}{t^{3}}$$因此,$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$。
答案
$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$A
Please try a new game Rotatly