$$$2 t - 4 u$$$ 关于 $$$t$$$ 的导数

该计算器将求 $$$2 t - 4 u$$$ 关于 $$$t$$$ 的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dt} \left(2 t - 4 u\right)$$$

解答

和/差的导数等于导数的和/差:

$${\color{red}\left(\frac{d}{dt} \left(2 t - 4 u\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2 t\right) - \frac{d}{dt} \left(4 u\right)\right)}$$

常数的导数是$$$0$$$:

$$- {\color{red}\left(\frac{d}{dt} \left(4 u\right)\right)} + \frac{d}{dt} \left(2 t\right) = - {\color{red}\left(0\right)} + \frac{d}{dt} \left(2 t\right)$$

$$$c = 2$$$$$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$

$${\color{red}\left(\frac{d}{dt} \left(2 t\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(t\right)\right)}$$

应用幂法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$

$$2 {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = 2 {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dt} \left(2 t - 4 u\right) = 2$$$

答案

$$$\frac{d}{dt} \left(2 t - 4 u\right) = 2$$$A


Please try a new game Rotatly