$$$\frac{2 \pi x}{l}$$$ 关于 $$$x$$$ 的导数
您的输入
求$$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right)$$$。
解答
对 $$$c = \frac{2 \pi}{l}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{2 \pi x}{l}\right)\right)} = {\color{red}\left(\frac{2 \pi}{l} \frac{d}{dx} \left(x\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{2 \pi {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{l} = \frac{2 \pi {\color{red}\left(1\right)}}{l}$$因此,$$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right) = \frac{2 \pi}{l}$$$。
答案
$$$\frac{d}{dx} \left(\frac{2 \pi x}{l}\right) = \frac{2 \pi}{l}$$$A
Please try a new game Rotatly