$$$2 n - 1$$$的导数
您的输入
求$$$\frac{d}{dn} \left(2 n - 1\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dn} \left(2 n - 1\right)\right)} = {\color{red}\left(\frac{d}{dn} \left(2 n\right) - \frac{d}{dn} \left(1\right)\right)}$$常数的导数是$$$0$$$:
$$- {\color{red}\left(\frac{d}{dn} \left(1\right)\right)} + \frac{d}{dn} \left(2 n\right) = - {\color{red}\left(0\right)} + \frac{d}{dn} \left(2 n\right)$$对 $$$c = 2$$$ 和 $$$f{\left(n \right)} = n$$$ 应用常数倍法则 $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dn} \left(2 n\right)\right)} = {\color{red}\left(2 \frac{d}{dn} \left(n\right)\right)}$$应用幂法则 $$$\frac{d}{dn} \left(n^{m}\right) = m n^{m - 1}$$$,取 $$$m = 1$$$,也就是说,$$$\frac{d}{dn} \left(n\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dn} \left(n\right)\right)} = 2 {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dn} \left(2 n - 1\right) = 2$$$。
答案
$$$\frac{d}{dn} \left(2 n - 1\right) = 2$$$A
Please try a new game Rotatly