$$$1 - y$$$的导数
您的输入
求$$$\frac{d}{dy} \left(1 - y\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dy} \left(1 - y\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(1\right) - \frac{d}{dy} \left(y\right)\right)}$$应用幂法则 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dy} \left(y\right) = 1$$$:
$$- {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} + \frac{d}{dy} \left(1\right) = - {\color{red}\left(1\right)} + \frac{d}{dy} \left(1\right)$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{d}{dy} \left(1\right)\right)} - 1 = {\color{red}\left(0\right)} - 1$$因此,$$$\frac{d}{dy} \left(1 - y\right) = -1$$$。
答案
$$$\frac{d}{dy} \left(1 - y\right) = -1$$$A
Please try a new game Rotatly