$$$1 - y^{2}$$$的导数
您的输入
求$$$\frac{d}{dy} \left(1 - y^{2}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dy} \left(1 - y^{2}\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(1\right) - \frac{d}{dy} \left(y^{2}\right)\right)}$$应用幂次法则 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$,其中 $$$n = 2$$$:
$$- {\color{red}\left(\frac{d}{dy} \left(y^{2}\right)\right)} + \frac{d}{dy} \left(1\right) = - {\color{red}\left(2 y\right)} + \frac{d}{dy} \left(1\right)$$常数的导数是$$$0$$$:
$$- 2 y + {\color{red}\left(\frac{d}{dy} \left(1\right)\right)} = - 2 y + {\color{red}\left(0\right)}$$因此,$$$\frac{d}{dy} \left(1 - y^{2}\right) = - 2 y$$$。
答案
$$$\frac{d}{dy} \left(1 - y^{2}\right) = - 2 y$$$A
Please try a new game Rotatly