$$$\frac{1}{\sqrt{5 t^{2} + 1}}$$$的导数
您的输入
求$$$\frac{d}{dt} \left(\frac{1}{\sqrt{5 t^{2} + 1}}\right)$$$。
解答
函数$$$\frac{1}{\sqrt{5 t^{2} + 1}}$$$是两个函数$$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$和$$$g{\left(t \right)} = 5 t^{2} + 1$$$的复合$$$f{\left(g{\left(t \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(\frac{1}{\sqrt{5 t^{2} + 1}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right) \frac{d}{dt} \left(5 t^{2} + 1\right)\right)}$$应用幂次法则 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,其中 $$$n = - \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right)\right)} \frac{d}{dt} \left(5 t^{2} + 1\right) = {\color{red}\left(- \frac{1}{2 u^{\frac{3}{2}}}\right)} \frac{d}{dt} \left(5 t^{2} + 1\right)$$返回到原变量:
$$- \frac{\frac{d}{dt} \left(5 t^{2} + 1\right)}{2 {\color{red}\left(u\right)}^{\frac{3}{2}}} = - \frac{\frac{d}{dt} \left(5 t^{2} + 1\right)}{2 {\color{red}\left(5 t^{2} + 1\right)}^{\frac{3}{2}}}$$和/差的导数等于导数的和/差:
$$- \frac{{\color{red}\left(\frac{d}{dt} \left(5 t^{2} + 1\right)\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(\frac{d}{dt} \left(5 t^{2}\right) + \frac{d}{dt} \left(1\right)\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$常数的导数是$$$0$$$:
$$- \frac{{\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(5 t^{2}\right)}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(0\right)} + \frac{d}{dt} \left(5 t^{2}\right)}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$对 $$$c = 5$$$ 和 $$$f{\left(t \right)} = t^{2}$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$:
$$- \frac{{\color{red}\left(\frac{d}{dt} \left(5 t^{2}\right)\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(5 \frac{d}{dt} \left(t^{2}\right)\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$应用幂次法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,其中 $$$n = 2$$$:
$$- \frac{5 {\color{red}\left(\frac{d}{dt} \left(t^{2}\right)\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}} = - \frac{5 {\color{red}\left(2 t\right)}}{2 \left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$因此,$$$\frac{d}{dt} \left(\frac{1}{\sqrt{5 t^{2} + 1}}\right) = - \frac{5 t}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$$。
答案
$$$\frac{d}{dt} \left(\frac{1}{\sqrt{5 t^{2} + 1}}\right) = - \frac{5 t}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}$$$A