$$$- \frac{\sin{\left(t \right)}}{2}$$$的导数

该计算器将求$$$- \frac{\sin{\left(t \right)}}{2}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right)$$$

解答

$$$c = - \frac{1}{2}$$$$$$f{\left(t \right)} = \sin{\left(t \right)}$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$

$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right)\right)} = {\color{red}\left(- \frac{\frac{d}{dt} \left(\sin{\left(t \right)}\right)}{2}\right)}$$

正弦函数的导数为 $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:

$$- \frac{{\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{2} = - \frac{{\color{red}\left(\cos{\left(t \right)}\right)}}{2}$$

因此,$$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$

答案

$$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$A


Please try a new game Rotatly