$$$- c + c_{max}$$$ 关于 $$$c$$$ 的导数
您的输入
求$$$\frac{d}{dc} \left(- c + c_{max}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dc} \left(- c + c_{max}\right)\right)} = {\color{red}\left(- \frac{d}{dc} \left(c\right) + \frac{dc_{max}}{dc}\right)}$$应用幂法则 $$$\frac{d}{dc} \left(c^{n}\right) = n c^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dc} \left(c\right) = 1$$$:
$$- {\color{red}\left(\frac{d}{dc} \left(c\right)\right)} + \frac{dc_{max}}{dc} = - {\color{red}\left(1\right)} + \frac{dc_{max}}{dc}$$常数的导数是$$$0$$$:
$${\color{red}\left(\frac{dc_{max}}{dc}\right)} - 1 = {\color{red}\left(0\right)} - 1$$因此,$$$\frac{d}{dc} \left(- c + c_{max}\right) = -1$$$。
答案
$$$\frac{d}{dc} \left(- c + c_{max}\right) = -1$$$A
Please try a new game Rotatly