$$$- 2 e^{t} \sin{\left(t \right)}$$$的导数

该计算器将求$$$- 2 e^{t} \sin{\left(t \right)}$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right)$$$

解答

$$$c = -2$$$$$$f{\left(t \right)} = e^{t} \sin{\left(t \right)}$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$

$${\color{red}\left(\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dt} \left(e^{t} \sin{\left(t \right)}\right)\right)}$$

$$$f{\left(t \right)} = e^{t}$$$$$$g{\left(t \right)} = \sin{\left(t \right)}$$$ 应用乘积法则 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$$- 2 {\color{red}\left(\frac{d}{dt} \left(e^{t} \sin{\left(t \right)}\right)\right)} = - 2 {\color{red}\left(\frac{d}{dt} \left(e^{t}\right) \sin{\left(t \right)} + e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$

指数函数的导数为 $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$

$$- 2 e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right) - 2 \sin{\left(t \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - 2 e^{t} \frac{d}{dt} \left(\sin{\left(t \right)}\right) - 2 \sin{\left(t \right)} {\color{red}\left(e^{t}\right)}$$

正弦函数的导数为 $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:

$$- 2 e^{t} \sin{\left(t \right)} - 2 e^{t} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = - 2 e^{t} \sin{\left(t \right)} - 2 e^{t} {\color{red}\left(\cos{\left(t \right)}\right)}$$

化简:

$$- 2 e^{t} \sin{\left(t \right)} - 2 e^{t} \cos{\left(t \right)} = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$

因此,$$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right) = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$$

答案

$$$\frac{d}{dt} \left(- 2 e^{t} \sin{\left(t \right)}\right) = - 2 \sqrt{2} e^{t} \sin{\left(t + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly