$$$- \frac{141 p t}{800} + \frac{1673}{500}$$$ 关于 $$$t$$$ 的导数
相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器
您的输入
求$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)$$$。
解答
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right)\right)} = {\color{red}\left(- \frac{d}{dt} \left(\frac{141 p t}{800}\right) + \frac{d}{dt} \left(\frac{1673}{500}\right)\right)}$$对 $$$c = \frac{141 p}{800}$$$ 和 $$$f{\left(t \right)} = t$$$ 应用常数倍法则 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{141 p t}{800}\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - {\color{red}\left(\frac{141 p}{800} \frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$应用幂法则 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{141 p {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right) = - \frac{141 p {\color{red}\left(1\right)}}{800} + \frac{d}{dt} \left(\frac{1673}{500}\right)$$常数的导数是$$$0$$$:
$$- \frac{141 p}{800} + {\color{red}\left(\frac{d}{dt} \left(\frac{1673}{500}\right)\right)} = - \frac{141 p}{800} + {\color{red}\left(0\right)}$$因此,$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$。
答案
$$$\frac{d}{dt} \left(- \frac{141 p t}{800} + \frac{1673}{500}\right) = - \frac{141 p}{800}$$$A