$$$\left\langle 2 t, 2\right\rangle$$$ yönünde birim vektör
Girdiniz
$$$\mathbf{\vec{u}} = \left\langle 2 t, 2\right\rangle$$$ yönündeki birim vektörü bulun.
Çözüm
Vektörün büyüklüğü $$$\mathbf{\left\lvert\vec{u}\right\rvert} = 2 \sqrt{t^{2} + 1}$$$ (adımlar için bkz. magnitude calculator).
Birim vektör, verilen vektörün her bir bileşeninin vektörün büyüklüğüne bölünmesiyle elde edilir.
Dolayısıyla, birim vektör $$$\mathbf{\vec{e}} = \left\langle \frac{t}{\sqrt{t^{2} + 1}}, \frac{1}{\sqrt{t^{2} + 1}}\right\rangle$$$'dir (adımlar için bkz. vektörün skalerle çarpımı hesaplayıcısı).
Cevap
$$$\left\langle 2 t, 2\right\rangle$$$A doğrultusundaki birim vektör $$$\left\langle \frac{t}{\sqrt{t^{2} + 1}}, \frac{1}{\sqrt{t^{2} + 1}}\right\rangle = \left\langle \frac{t}{\left(t^{2} + 1\right)^{0.5}}, \left(t^{2} + 1\right)^{-0.5}\right\rangle$$$A'dir.