$$$15 \sqrt{5} e^{5 x}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 15 \sqrt{5} e^{5 x}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=15 \sqrt{5}$$$ ve $$$f{\left(x \right)} = e^{5 x}$$$ ile uygula:
$${\color{red}{\int{15 \sqrt{5} e^{5 x} d x}}} = {\color{red}{\left(15 \sqrt{5} \int{e^{5 x} d x}\right)}}$$
$$$u=5 x$$$ olsun.
Böylece $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{5}$$$ elde ederiz.
Dolayısıyla,
$$15 \sqrt{5} {\color{red}{\int{e^{5 x} d x}}} = 15 \sqrt{5} {\color{red}{\int{\frac{e^{u}}{5} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:
$$15 \sqrt{5} {\color{red}{\int{\frac{e^{u}}{5} d u}}} = 15 \sqrt{5} {\color{red}{\left(\frac{\int{e^{u} d u}}{5}\right)}}$$
Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:
$$3 \sqrt{5} {\color{red}{\int{e^{u} d u}}} = 3 \sqrt{5} {\color{red}{e^{u}}}$$
Hatırlayın ki $$$u=5 x$$$:
$$3 \sqrt{5} e^{{\color{red}{u}}} = 3 \sqrt{5} e^{{\color{red}{\left(5 x\right)}}}$$
Dolayısıyla,
$$\int{15 \sqrt{5} e^{5 x} d x} = 3 \sqrt{5} e^{5 x}$$
İntegrasyon sabitini ekleyin:
$$\int{15 \sqrt{5} e^{5 x} d x} = 3 \sqrt{5} e^{5 x}+C$$
Cevap
$$$\int 15 \sqrt{5} e^{5 x}\, dx = 3 \sqrt{5} e^{5 x} + C$$$A