$$$63 x^{23} - 126$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$63 x^{23} - 126$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \left(63 x^{23} - 126\right)\, dx$$$.

Çözüm

Her terimin integralini alın:

$${\color{red}{\int{\left(63 x^{23} - 126\right)d x}}} = {\color{red}{\left(- \int{126 d x} + \int{63 x^{23} d x}\right)}}$$

$$$c=126$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:

$$\int{63 x^{23} d x} - {\color{red}{\int{126 d x}}} = \int{63 x^{23} d x} - {\color{red}{\left(126 x\right)}}$$

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=63$$$ ve $$$f{\left(x \right)} = x^{23}$$$ ile uygula:

$$- 126 x + {\color{red}{\int{63 x^{23} d x}}} = - 126 x + {\color{red}{\left(63 \int{x^{23} d x}\right)}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=23$$$ ile uygulayın:

$$- 126 x + 63 {\color{red}{\int{x^{23} d x}}}=- 126 x + 63 {\color{red}{\frac{x^{1 + 23}}{1 + 23}}}=- 126 x + 63 {\color{red}{\left(\frac{x^{24}}{24}\right)}}$$

Dolayısıyla,

$$\int{\left(63 x^{23} - 126\right)d x} = \frac{21 x^{24}}{8} - 126 x$$

Sadeleştirin:

$$\int{\left(63 x^{23} - 126\right)d x} = \frac{21 x \left(x^{23} - 48\right)}{8}$$

İntegrasyon sabitini ekleyin:

$$\int{\left(63 x^{23} - 126\right)d x} = \frac{21 x \left(x^{23} - 48\right)}{8}+C$$

Cevap

$$$\int \left(63 x^{23} - 126\right)\, dx = \frac{21 x \left(x^{23} - 48\right)}{8} + C$$$A


Please try a new game Rotatly