$$$\frac{4 x}{x^{2} - 1}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{4 x}{x^{2} - 1}\, dx$$$.
Çözüm
$$$u=x^{2} - 1$$$ olsun.
Böylece $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (adımlar » görülebilir) ve $$$x dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu şekilde yeniden yazılabilir:
$${\color{red}{\int{\frac{4 x}{x^{2} - 1} d x}}} = {\color{red}{\int{\frac{2}{u} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$${\color{red}{\int{\frac{2}{u} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Hatırlayın ki $$$u=x^{2} - 1$$$:
$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x^{2} - 1\right)}}}\right| \right)}$$
Dolayısıyla,
$$\int{\frac{4 x}{x^{2} - 1} d x} = 2 \ln{\left(\left|{x^{2} - 1}\right| \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{4 x}{x^{2} - 1} d x} = 2 \ln{\left(\left|{x^{2} - 1}\right| \right)}+C$$
Cevap
$$$\int \frac{4 x}{x^{2} - 1}\, dx = 2 \ln\left(\left|{x^{2} - 1}\right|\right) + C$$$A