Integral of $$$\frac{4 x}{x^{2} - 1}$$$

The calculator will find the integral/antiderivative of $$$\frac{4 x}{x^{2} - 1}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{4 x}{x^{2} - 1}\, dx$$$.

Solution

Let $$$u=x^{2} - 1$$$.

Then $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = \frac{du}{2}$$$.

Thus,

$${\color{red}{\int{\frac{4 x}{x^{2} - 1} d x}}} = {\color{red}{\int{\frac{2}{u} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:

$${\color{red}{\int{\frac{2}{u} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u} d u}\right)}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=x^{2} - 1$$$:

$$2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 \ln{\left(\left|{{\color{red}{\left(x^{2} - 1\right)}}}\right| \right)}$$

Therefore,

$$\int{\frac{4 x}{x^{2} - 1} d x} = 2 \ln{\left(\left|{x^{2} - 1}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{4 x}{x^{2} - 1} d x} = 2 \ln{\left(\left|{x^{2} - 1}\right| \right)}+C$$

Answer

$$$\int \frac{4 x}{x^{2} - 1}\, dx = 2 \ln\left(\left|{x^{2} - 1}\right|\right) + C$$$A


Please try a new game Rotatly