$$$\frac{2}{x \sqrt{x^{2} - 4}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{2}{x \sqrt{x^{2} - 4}}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{1}{x \sqrt{x^{2} - 4}}$$$ ile uygula:
$${\color{red}{\int{\frac{2}{x \sqrt{x^{2} - 4}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{x \sqrt{x^{2} - 4}} d x}\right)}}$$
$$$u=\frac{1}{x}$$$ olsun.
Böylece $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (adımlar » görülebilir) ve $$$\frac{dx}{x^{2}} = - du$$$ elde ederiz.
O halde,
$$2 {\color{red}{\int{\frac{1}{x \sqrt{x^{2} - 4}} d x}}} = 2 {\color{red}{\int{\left(- \frac{1}{\sqrt{1 - 4 u^{2}}}\right)d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{1}{\sqrt{1 - 4 u^{2}}}$$$ ile uygula:
$$2 {\color{red}{\int{\left(- \frac{1}{\sqrt{1 - 4 u^{2}}}\right)d u}}} = 2 {\color{red}{\left(- \int{\frac{1}{\sqrt{1 - 4 u^{2}}} d u}\right)}}$$
$$$u=\frac{\sin{\left(v \right)}}{2}$$$ olsun.
O halde $$$du=\left(\frac{\sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\cos{\left(v \right)}}{2} dv$$$ (adımlar » görülebilir).
Ayrıca, buradan $$$v=\operatorname{asin}{\left(2 u \right)}$$$ elde edilir.
İntegrand şu hale gelir
$$$\frac{1}{\sqrt{1 - 4 u ^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}$$$
Özdeşliği kullanın: $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$
$$$\frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}}$$$
$$$\cos{\left( v \right)} \ge 0$$$ olduğunu varsayarsak, aşağıdakileri elde ederiz:
$$$\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{1}{\cos{\left( v \right)}}$$$
O halde,
$$- 2 {\color{red}{\int{\frac{1}{\sqrt{1 - 4 u^{2}}} d u}}} = - 2 {\color{red}{\int{\frac{1}{2} d v}}}$$
$$$c=\frac{1}{2}$$$ kullanarak $$$\int c\, dv = c v$$$ sabit kuralını uygula:
$$- 2 {\color{red}{\int{\frac{1}{2} d v}}} = - 2 {\color{red}{\left(\frac{v}{2}\right)}}$$
Hatırlayın ki $$$v=\operatorname{asin}{\left(2 u \right)}$$$:
$$- {\color{red}{v}} = - {\color{red}{\operatorname{asin}{\left(2 u \right)}}}$$
Hatırlayın ki $$$u=\frac{1}{x}$$$:
$$- \operatorname{asin}{\left(2 {\color{red}{u}} \right)} = - \operatorname{asin}{\left(2 {\color{red}{\frac{1}{x}}} \right)}$$
Dolayısıyla,
$$\int{\frac{2}{x \sqrt{x^{2} - 4}} d x} = - \operatorname{asin}{\left(\frac{2}{x} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{2}{x \sqrt{x^{2} - 4}} d x} = - \operatorname{asin}{\left(\frac{2}{x} \right)}+C$$
Cevap
$$$\int \frac{2}{x \sqrt{x^{2} - 4}}\, dx = - \operatorname{asin}{\left(\frac{2}{x} \right)} + C$$$A