$$$\frac{1}{1 - \sin{\left(x \right)}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{1 - \sin{\left(x \right)}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx$$$.

Çözüm

$$$1$$$ ifadesini $$$\sin^2\left(\frac{x}{2}\right)+\cos^2\left(\frac{x}{2}\right)$$$ olarak yeniden yazın ve sinüs için çift açı formülünü uygulayın: $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{1 - \sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$

Kareye tamamlayın (adımlar » görülebilir):

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}}$$

Payı ve paydayı $$$\sec^2\left(\frac{x}{2}\right)$$$ ile çarpın.:

$${\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}}$$

$$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$ olsun.

Böylece $$$du=\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (adımlar » görülebilir) ve $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$ elde ederiz.

O halde,

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Hatırlayın ki $$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$:

$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)}}^{-1}$$

Dolayısıyla,

$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}+C$$

Cevap

$$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1} + C$$$A


Please try a new game Rotatly