Integral dari $$$\frac{1}{1 - \sin{\left(x \right)}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{1}{1 - \sin{\left(x \right)}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx$$$.

Solusi

Tulis ulang $$$1$$$ sebagai $$$\sin^2\left(\frac{x}{2}\right)+\cos^2\left(\frac{x}{2}\right)$$$ dan terapkan rumus sudut ganda untuk sinus $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{1 - \sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$

Bentuk kuadrat sempurna (langkah-langkah dapat dilihat »):

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}}$$

Kalikan pembilang dan penyebut dengan $$$\sec^2\left(\frac{x}{2}\right)$$$:

$${\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}}$$

Misalkan $$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$.

Kemudian $$$du=\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.

Integralnya menjadi

$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=2$$$ dan $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=-2$$$:

$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Ingat bahwa $$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$:

$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)}}^{-1}$$

Oleh karena itu,

$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}$$

Tambahkan konstanta integrasi:

$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}+C$$

Jawaban

$$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1} + C$$$A


Please try a new game Rotatly