Integrale di $$$\frac{1}{1 - \sin{\left(x \right)}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx$$$.
Soluzione
Riscrivi $$$1$$$ come $$$\sin^2\left(\frac{x}{2}\right)+\cos^2\left(\frac{x}{2}\right)$$$ e applica la formula dell'angolo doppio del seno $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$${\color{red}{\int{\frac{1}{1 - \sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}}$$
Completa il quadrato (i passaggi possono essere visualizzati »):
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{2} \right)} - 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} + \cos^{2}{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}}$$
Moltiplica il numeratore e il denominatore per $$$\sec^2\left(\frac{x}{2}\right)$$$:
$${\color{red}{\int{\frac{1}{\left(\sin{\left(\frac{x}{2} \right)} - \cos{\left(\frac{x}{2} \right)}\right)^{2}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}}$$
Sia $$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$.
Quindi $$$du=\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
Quindi,
$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:
$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$
Ricordiamo che $$$u=\tan{\left(\frac{x}{2} \right)} - 1$$$:
$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\left(\tan{\left(\frac{x}{2} \right)} - 1\right)}}^{-1}$$
Pertanto,
$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{1 - \sin{\left(x \right)}} d x} = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1}+C$$
Risposta
$$$\int \frac{1}{1 - \sin{\left(x \right)}}\, dx = - \frac{2}{\tan{\left(\frac{x}{2} \right)} - 1} + C$$$A