$$$\frac{\left(y - 4\right)^{2}}{3}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{\left(y - 4\right)^{2}}{3}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(y \right)} = \left(y - 4\right)^{2}$$$ ile uygula:

$${\color{red}{\int{\frac{\left(y - 4\right)^{2}}{3} d y}}} = {\color{red}{\left(\frac{\int{\left(y - 4\right)^{2} d y}}{3}\right)}}$$

$$$u=y - 4$$$ olsun.

Böylece $$$du=\left(y - 4\right)^{\prime }dy = 1 dy$$$ (adımlar » görülebilir) ve $$$dy = du$$$ elde ederiz.

İntegral şu hale gelir

$$\frac{{\color{red}{\int{\left(y - 4\right)^{2} d y}}}}{3} = \frac{{\color{red}{\int{u^{2} d u}}}}{3}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:

$$\frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

Hatırlayın ki $$$u=y - 4$$$:

$$\frac{{\color{red}{u}}^{3}}{9} = \frac{{\color{red}{\left(y - 4\right)}}^{3}}{9}$$

Dolayısıyla,

$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}+C$$

Cevap

$$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy = \frac{\left(y - 4\right)^{3}}{9} + C$$$A


Please try a new game Rotatly