$$$\frac{\left(y - 4\right)^{2}}{3}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$'i $$$c=\frac{1}{3}$$$ ve $$$f{\left(y \right)} = \left(y - 4\right)^{2}$$$ ile uygula:
$${\color{red}{\int{\frac{\left(y - 4\right)^{2}}{3} d y}}} = {\color{red}{\left(\frac{\int{\left(y - 4\right)^{2} d y}}{3}\right)}}$$
$$$u=y - 4$$$ olsun.
Böylece $$$du=\left(y - 4\right)^{\prime }dy = 1 dy$$$ (adımlar » görülebilir) ve $$$dy = du$$$ elde ederiz.
İntegral şu hale gelir
$$\frac{{\color{red}{\int{\left(y - 4\right)^{2} d y}}}}{3} = \frac{{\color{red}{\int{u^{2} d u}}}}{3}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$\frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$
Hatırlayın ki $$$u=y - 4$$$:
$$\frac{{\color{red}{u}}^{3}}{9} = \frac{{\color{red}{\left(y - 4\right)}}^{3}}{9}$$
Dolayısıyla,
$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}+C$$
Cevap
$$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy = \frac{\left(y - 4\right)^{3}}{9} + C$$$A