Integrale di $$$\frac{\left(y - 4\right)^{2}}{3}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\left(y - 4\right)^{2}}{3}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(y \right)} = \left(y - 4\right)^{2}$$$:

$${\color{red}{\int{\frac{\left(y - 4\right)^{2}}{3} d y}}} = {\color{red}{\left(\frac{\int{\left(y - 4\right)^{2} d y}}{3}\right)}}$$

Sia $$$u=y - 4$$$.

Quindi $$$du=\left(y - 4\right)^{\prime }dy = 1 dy$$$ (i passaggi si possono vedere »), e si ha che $$$dy = du$$$.

L'integrale diventa

$$\frac{{\color{red}{\int{\left(y - 4\right)^{2} d y}}}}{3} = \frac{{\color{red}{\int{u^{2} d u}}}}{3}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$\frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

Ricordiamo che $$$u=y - 4$$$:

$$\frac{{\color{red}{u}}^{3}}{9} = \frac{{\color{red}{\left(y - 4\right)}}^{3}}{9}$$

Pertanto,

$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\left(y - 4\right)^{2}}{3} d y} = \frac{\left(y - 4\right)^{3}}{9}+C$$

Risposta

$$$\int \frac{\left(y - 4\right)^{2}}{3}\, dy = \frac{\left(y - 4\right)^{3}}{9} + C$$$A


Please try a new game Rotatly