$$$e^{\frac{1}{x}}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(e^{\frac{1}{x}}\right)$$$.
Çözüm
$$$e^{\frac{1}{x}}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = e^{u}$$$ ve $$$g{\left(x \right)} = \frac{1}{x}$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$Üstel fonksiyonun türevi $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\frac{1}{x}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\frac{1}{x}\right)$$Eski değişkene geri dön:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\frac{1}{x}\right) = e^{{\color{red}\left(\frac{1}{x}\right)}} \frac{d}{dx} \left(\frac{1}{x}\right)$$$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = -1$$$ ile uygula:
$$e^{\frac{1}{x}} {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = e^{\frac{1}{x}} {\color{red}\left(- \frac{1}{x^{2}}\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(e^{\frac{1}{x}}\right) = - \frac{e^{\frac{1}{x}}}{x^{2}}$$$.
Cevap
$$$\frac{d}{dx} \left(e^{\frac{1}{x}}\right) = - \frac{e^{\frac{1}{x}}}{x^{2}}$$$A