Konik kesiti belirleyin $$$225 = \frac{3721 x^{2}}{25}$$$

Hesap makinesi, adımları göstererek $$$225 = \frac{3721 x^{2}}{25}$$$ konik kesitinin türünü belirleyecek ve özelliklerini bulacaktır.

İlgili hesaplayıcılar: Parabol Hesaplayıcı, Daire Hesaplayıcı, Elips Hesaplayıcı, Hiperbol Hesaplayıcı

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Konik kesit $$$225 = \frac{3721 x^{2}}{25}$$$ için türünü belirleyin ve özelliklerini bulun.

Çözüm

Bir konik kesitin genel denklemi $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$ şeklindedir.

Bizim durumumuzda, $$$A = \frac{3721}{25}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -225$$$.

Konik kesitin diskriminantı $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$'dir.

Ardından, $$$B^{2} - 4 A C = 0$$$.

$$$\Delta = 0$$$ olduğundan, bu dejenere bir konik kesittir.

$$$B^{2} - 4 A C = 0$$$ olduğundan, denklem iki paralel doğruyu temsil eder.

Cevap

$$$225 = \frac{3721 x^{2}}{25}$$$A, $$$x = - \frac{75}{61}$$$, $$$x = \frac{75}{61}$$$A doğrularından oluşan bir doğru çifti gösterir.

Genel biçim: $$$\frac{3721 x^{2}}{25} - 225 = 0$$$A.

Çarpanlarına ayrılmış biçim: $$$\left(61 x - 75\right) \left(61 x + 75\right) = 0$$$A.

Grafik: bkz. grafik hesap makinesi.


Please try a new game Rotatly