Προσδιορίστε την κωνική τομή $$$225 = \frac{3721 x^{2}}{25}$$$
Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής
Η είσοδός σας
Αναγνωρίστε την κωνική τομή $$$225 = \frac{3721 x^{2}}{25}$$$ και βρείτε τις ιδιότητές της.
Λύση
Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Στην περίπτωσή μας, $$$A = \frac{3721}{25}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -225$$$.
Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.
Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.
Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση παριστάνει δύο παράλληλες ευθείες.
Απάντηση
$$$225 = \frac{3721 x^{2}}{25}$$$A αναπαριστά το ζεύγος των ευθειών $$$x = - \frac{75}{61}$$$, $$$x = \frac{75}{61}$$$A.
Γενική μορφή: $$$\frac{3721 x^{2}}{25} - 225 = 0$$$A.
Παραγοντοποιημένη μορφή: $$$\left(61 x - 75\right) \left(61 x + 75\right) = 0$$$A.
Γράφημα: δείτε το graphing calculator.