Integralen av $$$x e^{x}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$x e^{x}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int x e^{x}\, dx$$$.

Lösning

För integralen $$$\int{x e^{x} d x}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=x$$$ och $$$\operatorname{dv}=e^{x} dx$$$.

Då gäller $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (stegen kan ses »).

Alltså,

$${\color{red}{\int{x e^{x} d x}}}={\color{red}{\left(x \cdot e^{x}-\int{e^{x} \cdot 1 d x}\right)}}={\color{red}{\left(x e^{x} - \int{e^{x} d x}\right)}}$$

Integralen av den exponentiella funktionen är $$$\int{e^{x} d x} = e^{x}$$$:

$$x e^{x} - {\color{red}{\int{e^{x} d x}}} = x e^{x} - {\color{red}{e^{x}}}$$

Alltså,

$$\int{x e^{x} d x} = x e^{x} - e^{x}$$

Förenkla:

$$\int{x e^{x} d x} = \left(x - 1\right) e^{x}$$

Lägg till integrationskonstanten:

$$\int{x e^{x} d x} = \left(x - 1\right) e^{x}+C$$

Svar

$$$\int x e^{x}\, dx = \left(x - 1\right) e^{x} + C$$$A


Please try a new game Rotatly