Integralen av $$$\frac{1}{t^{5}}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \frac{1}{t^{5}}\, dt$$$.
Lösning
Tillämpa potensregeln $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=-5$$$:
$${\color{red}{\int{\frac{1}{t^{5}} d t}}}={\color{red}{\int{t^{-5} d t}}}={\color{red}{\frac{t^{-5 + 1}}{-5 + 1}}}={\color{red}{\left(- \frac{t^{-4}}{4}\right)}}={\color{red}{\left(- \frac{1}{4 t^{4}}\right)}}$$
Alltså,
$$\int{\frac{1}{t^{5}} d t} = - \frac{1}{4 t^{4}}$$
Lägg till integrationskonstanten:
$$\int{\frac{1}{t^{5}} d t} = - \frac{1}{4 t^{4}}+C$$
Svar
$$$\int \frac{1}{t^{5}}\, dt = - \frac{1}{4 t^{4}} + C$$$A