Autovalores e autovetores de $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$

A calculadora encontrará os autovalores e os autovetores da matriz quadrada $$$2$$$x$$$2$$$ $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$, com as etapas mostradas.

Calculadora relacionada: Calculadora do Polinômio Característico

A

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre os autovalores e os autovetores de $$$\left[\begin{array}{cc}3 & -10\\1 & -4\end{array}\right]$$$.

Solução

Comece por formar uma nova matriz, subtraindo $$$\lambda$$$ dos elementos diagonais da matriz dada: $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right]$$$.

O determinante da matriz obtida é $$$\left(\lambda - 1\right) \left(\lambda + 2\right)$$$ (para ver os passos, consulte calculadora de determinante).

Resolva a equação $$$\left(\lambda - 1\right) \left(\lambda + 2\right) = 0$$$.

As raízes são $$$\lambda_{1} = 1$$$, $$$\lambda_{2} = -2$$$ (para as etapas, veja equation solver).

Estes são os autovalores.

Em seguida, encontre os autovetores.

  • $$$\lambda = 1$$$

    $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}2 & -10\\1 & -5\end{array}\right]$$$

    O espaço nulo desta matriz é $$$\left\{\left[\begin{array}{c}5\\1\end{array}\right]\right\}$$$ (para ver os passos, consulte calculadora do espaço nulo).

    Este é o autovetor.

  • $$$\lambda = -2$$$

    $$$\left[\begin{array}{cc}3 - \lambda & -10\\1 & - \lambda - 4\end{array}\right] = \left[\begin{array}{cc}5 & -10\\1 & -2\end{array}\right]$$$

    O espaço nulo desta matriz é $$$\left\{\left[\begin{array}{c}2\\1\end{array}\right]\right\}$$$ (para ver os passos, consulte calculadora do espaço nulo).

    Este é o autovetor.

Resposta

Autovalor: $$$1$$$A, multiplicidade: $$$1$$$A, autovetor: $$$\left[\begin{array}{c}5\\1\end{array}\right]$$$A.

Autovalor: $$$-2$$$A, multiplicidade: $$$1$$$A, autovetor: $$$\left[\begin{array}{c}2\\1\end{array}\right]$$$A.


Please try a new game Rotatly