Integral de $$$\frac{x}{\sqrt{1 - x^{2}}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{x}{\sqrt{1 - x^{2}}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x}{\sqrt{1 - x^{2}}}\, dx$$$.

Solução

Seja $$$u=1 - x^{2}$$$.

Então $$$du=\left(1 - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (veja os passos »), e obtemos $$$x dx = - \frac{du}{2}$$$.

Portanto,

$${\color{red}{\int{\frac{x}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$

Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=- \frac{1}{2}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=- \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=- \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=- \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=- \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

Recorde que $$$u=1 - x^{2}$$$:

$$- \sqrt{{\color{red}{u}}} = - \sqrt{{\color{red}{\left(1 - x^{2}\right)}}}$$

Portanto,

$$\int{\frac{x}{\sqrt{1 - x^{2}}} d x} = - \sqrt{1 - x^{2}}$$

Adicione a constante de integração:

$$\int{\frac{x}{\sqrt{1 - x^{2}}} d x} = - \sqrt{1 - x^{2}}+C$$

Resposta

$$$\int \frac{x}{\sqrt{1 - x^{2}}}\, dx = - \sqrt{1 - x^{2}} + C$$$A


Please try a new game Rotatly