Integral de $$$\frac{x}{\sqrt{1 - x^{2}}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{x}{\sqrt{1 - x^{2}}}\, dx$$$.
Solução
Seja $$$u=1 - x^{2}$$$.
Então $$$du=\left(1 - x^{2}\right)^{\prime }dx = - 2 x dx$$$ (veja os passos »), e obtemos $$$x dx = - \frac{du}{2}$$$.
Portanto,
$${\color{red}{\int{\frac{x}{\sqrt{1 - x^{2}}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:
$${\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$
Aplique a regra da potência $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=- \frac{1}{2}$$$:
$$- \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=- \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=- \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=- \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=- \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$
Recorde que $$$u=1 - x^{2}$$$:
$$- \sqrt{{\color{red}{u}}} = - \sqrt{{\color{red}{\left(1 - x^{2}\right)}}}$$
Portanto,
$$\int{\frac{x}{\sqrt{1 - x^{2}}} d x} = - \sqrt{1 - x^{2}}$$
Adicione a constante de integração:
$$\int{\frac{x}{\sqrt{1 - x^{2}}} d x} = - \sqrt{1 - x^{2}}+C$$
Resposta
$$$\int \frac{x}{\sqrt{1 - x^{2}}}\, dx = - \sqrt{1 - x^{2}} + C$$$A