Integral de $$$\sqrt{9 - x^{2}}$$$

A calculadora encontrará a integral/antiderivada de $$$\sqrt{9 - x^{2}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sqrt{9 - x^{2}}\, dx$$$.

Solução

Seja $$$x=3 \sin{\left(u \right)}$$$.

Então $$$dx=\left(3 \sin{\left(u \right)}\right)^{\prime }du = 3 \cos{\left(u \right)} du$$$ (os passos podem ser vistos »).

Além disso, segue-se que $$$u=\operatorname{asin}{\left(\frac{x}{3} \right)}$$$.

Assim,

$$$\sqrt{9 - x^{2}} = \sqrt{9 - 9 \sin^{2}{\left( u \right)}}$$$

Use a identidade $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\sqrt{9 - 9 \sin^{2}{\left( u \right)}}=3 \sqrt{1 - \sin^{2}{\left( u \right)}}=3 \sqrt{\cos^{2}{\left( u \right)}}$$$

Supondo que $$$\cos{\left( u \right)} \ge 0$$$, obtemos o seguinte:

$$$3 \sqrt{\cos^{2}{\left( u \right)}} = 3 \cos{\left( u \right)}$$$

A integral torna-se

$${\color{red}{\int{\sqrt{9 - x^{2}} d x}}} = {\color{red}{\int{9 \cos^{2}{\left(u \right)} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=9$$$ e $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:

$${\color{red}{\int{9 \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\left(9 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$

Aplique a fórmula de redução de potência $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ com $$$\alpha= u $$$:

$$9 {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 9 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:

$$9 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 9 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$

Integre termo a termo:

$$\frac{9 {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = \frac{9 {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$\frac{9 \int{\cos{\left(2 u \right)} d u}}{2} + \frac{9 {\color{red}{\int{1 d u}}}}{2} = \frac{9 \int{\cos{\left(2 u \right)} d u}}{2} + \frac{9 {\color{red}{u}}}{2}$$

Seja $$$v=2 u$$$.

Então $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (veja os passos »), e obtemos $$$du = \frac{dv}{2}$$$.

Portanto,

$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{9 u}{2} + \frac{9 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{9 u}{2} + \frac{9 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$

A integral do cosseno é $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{9 u}{2} + \frac{9 {\color{red}{\sin{\left(v \right)}}}}{4}$$

Recorde que $$$v=2 u$$$:

$$\frac{9 u}{2} + \frac{9 \sin{\left({\color{red}{v}} \right)}}{4} = \frac{9 u}{2} + \frac{9 \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$

Recorde que $$$u=\operatorname{asin}{\left(\frac{x}{3} \right)}$$$:

$$\frac{9 \sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{9 {\color{red}{u}}}{2} = \frac{9 \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{3} \right)}}} \right)}}{4} + \frac{9 {\color{red}{\operatorname{asin}{\left(\frac{x}{3} \right)}}}}{2}$$

Portanto,

$$\int{\sqrt{9 - x^{2}} d x} = \frac{9 \sin{\left(2 \operatorname{asin}{\left(\frac{x}{3} \right)} \right)}}{4} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$

Usando as fórmulas $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifique a expressão:

$$\int{\sqrt{9 - x^{2}} d x} = \frac{3 x \sqrt{1 - \frac{x^{2}}{9}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$

Simplifique ainda mais:

$$\int{\sqrt{9 - x^{2}} d x} = \frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$

Adicione a constante de integração:

$$\int{\sqrt{9 - x^{2}} d x} = \frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}+C$$

Resposta

$$$\int \sqrt{9 - x^{2}}\, dx = \left(\frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}\right) + C$$$A


Please try a new game Rotatly