Integral dari $$$\sqrt{9 - x^{2}}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sqrt{9 - x^{2}}\, dx$$$.
Solusi
Misalkan $$$x=3 \sin{\left(u \right)}$$$.
Maka $$$dx=\left(3 \sin{\left(u \right)}\right)^{\prime }du = 3 \cos{\left(u \right)} du$$$ (langkah-langkah dapat dilihat »).
Selain itu, berlaku $$$u=\operatorname{asin}{\left(\frac{x}{3} \right)}$$$.
Jadi,
$$$\sqrt{9 - x^{2}} = \sqrt{9 - 9 \sin^{2}{\left( u \right)}}$$$
Gunakan identitas $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\sqrt{9 - 9 \sin^{2}{\left( u \right)}}=3 \sqrt{1 - \sin^{2}{\left( u \right)}}=3 \sqrt{\cos^{2}{\left( u \right)}}$$$
Dengan asumsi bahwa $$$\cos{\left( u \right)} \ge 0$$$, diperoleh sebagai berikut:
$$$3 \sqrt{\cos^{2}{\left( u \right)}} = 3 \cos{\left( u \right)}$$$
Oleh karena itu,
$${\color{red}{\int{\sqrt{9 - x^{2}} d x}}} = {\color{red}{\int{9 \cos^{2}{\left(u \right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=9$$$ dan $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:
$${\color{red}{\int{9 \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\left(9 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$
Terapkan rumus reduksi pangkat $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ dengan $$$\alpha= u $$$:
$$9 {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 9 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:
$$9 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 9 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$
Integralkan suku demi suku:
$$\frac{9 {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = \frac{9 {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}$$
Terapkan aturan konstanta $$$\int c\, du = c u$$$ dengan $$$c=1$$$:
$$\frac{9 \int{\cos{\left(2 u \right)} d u}}{2} + \frac{9 {\color{red}{\int{1 d u}}}}{2} = \frac{9 \int{\cos{\left(2 u \right)} d u}}{2} + \frac{9 {\color{red}{u}}}{2}$$
Misalkan $$$v=2 u$$$.
Kemudian $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = \frac{dv}{2}$$$.
Integral tersebut dapat ditulis ulang sebagai
$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{9 u}{2} + \frac{9 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:
$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{9 u}{2} + \frac{9 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}$$
Integral dari kosinus adalah $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:
$$\frac{9 u}{2} + \frac{9 {\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{9 u}{2} + \frac{9 {\color{red}{\sin{\left(v \right)}}}}{4}$$
Ingat bahwa $$$v=2 u$$$:
$$\frac{9 u}{2} + \frac{9 \sin{\left({\color{red}{v}} \right)}}{4} = \frac{9 u}{2} + \frac{9 \sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}$$
Ingat bahwa $$$u=\operatorname{asin}{\left(\frac{x}{3} \right)}$$$:
$$\frac{9 \sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{9 {\color{red}{u}}}{2} = \frac{9 \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{3} \right)}}} \right)}}{4} + \frac{9 {\color{red}{\operatorname{asin}{\left(\frac{x}{3} \right)}}}}{2}$$
Oleh karena itu,
$$\int{\sqrt{9 - x^{2}} d x} = \frac{9 \sin{\left(2 \operatorname{asin}{\left(\frac{x}{3} \right)} \right)}}{4} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$
Dengan menggunakan rumus $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, sederhanakan ekspresi:
$$\int{\sqrt{9 - x^{2}} d x} = \frac{3 x \sqrt{1 - \frac{x^{2}}{9}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$
Sederhanakan lebih lanjut:
$$\int{\sqrt{9 - x^{2}} d x} = \frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\sqrt{9 - x^{2}} d x} = \frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}+C$$
Jawaban
$$$\int \sqrt{9 - x^{2}}\, dx = \left(\frac{x \sqrt{9 - x^{2}}}{2} + \frac{9 \operatorname{asin}{\left(\frac{x}{3} \right)}}{2}\right) + C$$$A