Integral de $$$1 - 112 x^{3}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(1 - 112 x^{3}\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(1 - 112 x^{3}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{112 x^{3} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$- \int{112 x^{3} d x} + {\color{red}{\int{1 d x}}} = - \int{112 x^{3} d x} + {\color{red}{x}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=112$$$ e $$$f{\left(x \right)} = x^{3}$$$:
$$x - {\color{red}{\int{112 x^{3} d x}}} = x - {\color{red}{\left(112 \int{x^{3} d x}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=3$$$:
$$x - 112 {\color{red}{\int{x^{3} d x}}}=x - 112 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=x - 112 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Portanto,
$$\int{\left(1 - 112 x^{3}\right)d x} = - 28 x^{4} + x$$
Adicione a constante de integração:
$$\int{\left(1 - 112 x^{3}\right)d x} = - 28 x^{4} + x+C$$
Resposta
$$$\int \left(1 - 112 x^{3}\right)\, dx = \left(- 28 x^{4} + x\right) + C$$$A