$$$1 - 112 x^{3}$$$의 적분
사용자 입력
$$$\int \left(1 - 112 x^{3}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(1 - 112 x^{3}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{112 x^{3} d x}\right)}}$$
상수 법칙 $$$\int c\, dx = c x$$$을 $$$c=1$$$에 적용하십시오:
$$- \int{112 x^{3} d x} + {\color{red}{\int{1 d x}}} = - \int{112 x^{3} d x} + {\color{red}{x}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=112$$$와 $$$f{\left(x \right)} = x^{3}$$$에 적용하세요:
$$x - {\color{red}{\int{112 x^{3} d x}}} = x - {\color{red}{\left(112 \int{x^{3} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=3$$$에 적용합니다:
$$x - 112 {\color{red}{\int{x^{3} d x}}}=x - 112 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=x - 112 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
따라서,
$$\int{\left(1 - 112 x^{3}\right)d x} = - 28 x^{4} + x$$
적분 상수를 추가하세요:
$$\int{\left(1 - 112 x^{3}\right)d x} = - 28 x^{4} + x+C$$
정답
$$$\int \left(1 - 112 x^{3}\right)\, dx = \left(- 28 x^{4} + x\right) + C$$$A