Integral de $$$x^{2} e^{2 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x^{2} e^{2 x}\, dx$$$.
Solução
Para a integral $$$\int{x^{2} e^{2 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x^{2}$$$ e $$$\operatorname{dv}=e^{2 x} dx$$$.
Então $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$ (os passos podem ser vistos »).
A integral pode ser reescrita como
$${\color{red}{\int{x^{2} e^{2 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{2 x}}{2} - \int{x e^{2 x} d x}\right)}}$$
Para a integral $$$\int{x e^{2 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=e^{2 x} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{2 x} d x}=\frac{e^{2 x}}{2}$$$ (os passos podem ser vistos »).
Logo,
$$\frac{x^{2} e^{2 x}}{2} - {\color{red}{\int{x e^{2 x} d x}}}=\frac{x^{2} e^{2 x}}{2} - {\color{red}{\left(x \cdot \frac{e^{2 x}}{2}-\int{\frac{e^{2 x}}{2} \cdot 1 d x}\right)}}=\frac{x^{2} e^{2 x}}{2} - {\color{red}{\left(\frac{x e^{2 x}}{2} - \int{\frac{e^{2 x}}{2} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = e^{2 x}$$$:
$$\frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + {\color{red}{\int{\frac{e^{2 x}}{2} d x}}} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + {\color{red}{\left(\frac{\int{e^{2 x} d x}}{2}\right)}}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
Assim,
$$\frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{\int{e^{2 x} d x}}}}{2} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{\int{\frac{e^{u}}{2} d u}}}}{2} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}}{2}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{\int{e^{u} d u}}}}{4} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{{\color{red}{e^{u}}}}{4}$$
Recorde que $$$u=2 x$$$:
$$\frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{e^{{\color{red}{u}}}}{4} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{e^{{\color{red}{\left(2 x\right)}}}}{4}$$
Portanto,
$$\int{x^{2} e^{2 x} d x} = \frac{x^{2} e^{2 x}}{2} - \frac{x e^{2 x}}{2} + \frac{e^{2 x}}{4}$$
Simplifique:
$$\int{x^{2} e^{2 x} d x} = \frac{\left(2 x^{2} - 2 x + 1\right) e^{2 x}}{4}$$
Adicione a constante de integração:
$$\int{x^{2} e^{2 x} d x} = \frac{\left(2 x^{2} - 2 x + 1\right) e^{2 x}}{4}+C$$
Resposta
$$$\int x^{2} e^{2 x}\, dx = \frac{\left(2 x^{2} - 2 x + 1\right) e^{2 x}}{4} + C$$$A