Integral de $$$x^{\frac{5}{2}} - 3$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(x^{\frac{5}{2}} - 3\right)d x}}} = {\color{red}{\left(- \int{3 d x} + \int{x^{\frac{5}{2}} d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=3$$$:
$$\int{x^{\frac{5}{2}} d x} - {\color{red}{\int{3 d x}}} = \int{x^{\frac{5}{2}} d x} - {\color{red}{\left(3 x\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=\frac{5}{2}$$$:
$$- 3 x + {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- 3 x + {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- 3 x + {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$
Portanto,
$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x$$
Adicione a constante de integração:
$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x+C$$
Resposta
$$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx = \left(\frac{2 x^{\frac{7}{2}}}{7} - 3 x\right) + C$$$A