Integral of $$$x^{\frac{5}{2}} - 3$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(x^{\frac{5}{2}} - 3\right)d x}}} = {\color{red}{\left(- \int{3 d x} + \int{x^{\frac{5}{2}} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3$$$:
$$\int{x^{\frac{5}{2}} d x} - {\color{red}{\int{3 d x}}} = \int{x^{\frac{5}{2}} d x} - {\color{red}{\left(3 x\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{5}{2}$$$:
$$- 3 x + {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- 3 x + {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- 3 x + {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$
Therefore,
$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x$$
Add the constant of integration:
$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x+C$$
Answer
$$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx = \left(\frac{2 x^{\frac{7}{2}}}{7} - 3 x\right) + C$$$A