Integral of $$$x^{\frac{5}{2}} - 3$$$

The calculator will find the integral/antiderivative of $$$x^{\frac{5}{2}} - 3$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(x^{\frac{5}{2}} - 3\right)d x}}} = {\color{red}{\left(- \int{3 d x} + \int{x^{\frac{5}{2}} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3$$$:

$$\int{x^{\frac{5}{2}} d x} - {\color{red}{\int{3 d x}}} = \int{x^{\frac{5}{2}} d x} - {\color{red}{\left(3 x\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{5}{2}$$$:

$$- 3 x + {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- 3 x + {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- 3 x + {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$

Therefore,

$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x$$

Add the constant of integration:

$$\int{\left(x^{\frac{5}{2}} - 3\right)d x} = \frac{2 x^{\frac{7}{2}}}{7} - 3 x+C$$

Answer

$$$\int \left(x^{\frac{5}{2}} - 3\right)\, dx = \left(\frac{2 x^{\frac{7}{2}}}{7} - 3 x\right) + C$$$A


Please try a new game Rotatly