Integral de $$$x^{2} \operatorname{atan}{\left(4 x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$x^{2} \operatorname{atan}{\left(4 x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int x^{2} \operatorname{atan}{\left(4 x \right)}\, dx$$$.

Solução

Para a integral $$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=\operatorname{atan}{\left(4 x \right)}$$$ e $$$\operatorname{dv}=x^{2} dx$$$.

Então $$$\operatorname{du}=\left(\operatorname{atan}{\left(4 x \right)}\right)^{\prime }dx=\frac{4}{16 x^{2} + 1} dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (os passos podem ser vistos »).

Portanto,

$${\color{red}{\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(4 x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{4}{16 x^{2} + 1} d x}\right)}}={\color{red}{\left(\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \int{\frac{4 x^{3}}{48 x^{2} + 3} d x}\right)}}$$

Simplifique o integrando:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{48 x^{2} + 3} d x}}} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{3 \left(16 x^{2} + 1\right)} d x}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{4}{3}$$$ e $$$f{\left(x \right)} = \frac{x^{3}}{16 x^{2} + 1}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{3 \left(16 x^{2} + 1\right)} d x}}} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\left(\frac{4 \int{\frac{x^{3}}{16 x^{2} + 1} d x}}{3}\right)}}$$

Como o grau do numerador não é menor que o grau do denominador, realize a divisão longa de polinômios (os passos podem ser vistos »):

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\frac{x^{3}}{16 x^{2} + 1} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\left(\frac{x}{16} - \frac{x}{16 \left(16 x^{2} + 1\right)}\right)d x}}}}{3}$$

Integre termo a termo:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\left(\frac{x}{16} - \frac{x}{16 \left(16 x^{2} + 1\right)}\right)d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\left(\int{\frac{x}{16} d x} - \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}\right)}}}{3}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{16}$$$ e $$$f{\left(x \right)} = x$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{4 {\color{red}{\int{\frac{x}{16} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{4 {\color{red}{\left(\frac{\int{x d x}}{16}\right)}}}{3}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\int{x d x}}}}{12}=\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{12}=\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{12}$$

Seja $$$u=256 x^{2} + 16$$$.

Então $$$du=\left(256 x^{2} + 16\right)^{\prime }dx = 512 x dx$$$ (veja os passos »), e obtemos $$$x dx = \frac{du}{512}$$$.

A integral pode ser reescrita como

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{1}{512 u} d u}}}}{3}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{512}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{1}{512 u} d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{512}\right)}}}{3}$$

A integral de $$$\frac{1}{u}$$$ é $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{384} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{384}$$

Recorde que $$$u=256 x^{2} + 16$$$:

$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{384} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(\left|{{\color{red}{\left(256 x^{2} + 16\right)}}}\right| \right)}}{384}$$

Portanto,

$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(256 x^{2} + 16 \right)}}{384}$$

Simplifique:

$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(16 x^{2} + 1 \right)}}{384} + \frac{\ln{\left(2 \right)}}{96}$$

Adicione a constante de integração (e remova a constante da expressão):

$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(16 x^{2} + 1 \right)}}{384}+C$$

Resposta

$$$\int x^{2} \operatorname{atan}{\left(4 x \right)}\, dx = \left(\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln\left(16 x^{2} + 1\right)}{384}\right) + C$$$A


Please try a new game Rotatly