Integraal van $$$x^{2} \operatorname{atan}{\left(4 x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int x^{2} \operatorname{atan}{\left(4 x \right)}\, dx$$$.
Oplossing
Voor de integraal $$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\operatorname{atan}{\left(4 x \right)}$$$ en $$$\operatorname{dv}=x^{2} dx$$$.
Dan $$$\operatorname{du}=\left(\operatorname{atan}{\left(4 x \right)}\right)^{\prime }dx=\frac{4}{16 x^{2} + 1} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (de stappen zijn te zien »).
Dus,
$${\color{red}{\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(4 x \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{4}{16 x^{2} + 1} d x}\right)}}={\color{red}{\left(\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \int{\frac{4 x^{3}}{48 x^{2} + 3} d x}\right)}}$$
Vereenvoudig de integraand:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{48 x^{2} + 3} d x}}} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{3 \left(16 x^{2} + 1\right)} d x}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{4}{3}$$$ en $$$f{\left(x \right)} = \frac{x^{3}}{16 x^{2} + 1}$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\int{\frac{4 x^{3}}{3 \left(16 x^{2} + 1\right)} d x}}} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - {\color{red}{\left(\frac{4 \int{\frac{x^{3}}{16 x^{2} + 1} d x}}{3}\right)}}$$
Aangezien de graad van de teller niet kleiner is dan die van de noemer, voer een staartdeling van polynomen uit (stappen zijn te zien »):
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\frac{x^{3}}{16 x^{2} + 1} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\left(\frac{x}{16} - \frac{x}{16 \left(16 x^{2} + 1\right)}\right)d x}}}}{3}$$
Integreer termgewijs:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\int{\left(\frac{x}{16} - \frac{x}{16 \left(16 x^{2} + 1\right)}\right)d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{4 {\color{red}{\left(\int{\frac{x}{16} d x} - \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}\right)}}}{3}$$
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{16}$$$ en $$$f{\left(x \right)} = x$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{4 {\color{red}{\int{\frac{x}{16} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{4 {\color{red}{\left(\frac{\int{x d x}}{16}\right)}}}{3}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\int{x d x}}}}{12}=\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{12}=\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} + \frac{4 \int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}{3} - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{12}$$
Zij $$$u=256 x^{2} + 16$$$.
Dan $$$du=\left(256 x^{2} + 16\right)^{\prime }dx = 512 x dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$x dx = \frac{du}{512}$$$.
Dus,
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{x}{16 \left(16 x^{2} + 1\right)} d x}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{1}{512 u} d u}}}}{3}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{512}$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\int{\frac{1}{512 u} d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{4 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{512}\right)}}}{3}$$
De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{384} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{384}$$
We herinneren eraan dat $$$u=256 x^{2} + 16$$$:
$$\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{384} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(\left|{{\color{red}{\left(256 x^{2} + 16\right)}}}\right| \right)}}{384}$$
Dus,
$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(256 x^{2} + 16 \right)}}{384}$$
Vereenvoudig:
$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(16 x^{2} + 1 \right)}}{384} + \frac{\ln{\left(2 \right)}}{96}$$
Voeg de constante van integratie toe (en verwijder de constante uit de uitdrukking):
$$\int{x^{2} \operatorname{atan}{\left(4 x \right)} d x} = \frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln{\left(16 x^{2} + 1 \right)}}{384}+C$$
Antwoord
$$$\int x^{2} \operatorname{atan}{\left(4 x \right)}\, dx = \left(\frac{x^{3} \operatorname{atan}{\left(4 x \right)}}{3} - \frac{x^{2}}{24} + \frac{\ln\left(16 x^{2} + 1\right)}{384}\right) + C$$$A