Integral de $$$\frac{\sin^{2}{\left(x \right)}}{2}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sin^{2}{\left(x \right)}}{2}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin^{2}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(x \right)} d x}}{2}\right)}}$$
Aplique a fórmula de redução de potência $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ com $$$\alpha=x$$$:
$$\frac{{\color{red}{\int{\sin^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = 1 - \cos{\left(2 x \right)}$$$:
$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}{2}\right)}}}{2}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}}}{4} = \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}}{4}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$- \frac{\int{\cos{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{\int{1 d x}}}}{4} = - \frac{\int{\cos{\left(2 x \right)} d x}}{4} + \frac{{\color{red}{x}}}{4}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
A integral torna-se
$$\frac{x}{4} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{4} = \frac{x}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{x}{4} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{4} = \frac{x}{4} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{4}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{x}{4} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{x}{4} - \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$
Recorde que $$$u=2 x$$$:
$$\frac{x}{4} - \frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{x}{4} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{8}$$
Portanto,
$$\int{\frac{\sin^{2}{\left(x \right)}}{2} d x} = \frac{x}{4} - \frac{\sin{\left(2 x \right)}}{8}$$
Adicione a constante de integração:
$$\int{\frac{\sin^{2}{\left(x \right)}}{2} d x} = \frac{x}{4} - \frac{\sin{\left(2 x \right)}}{8}+C$$
Resposta
$$$\int \frac{\sin^{2}{\left(x \right)}}{2}\, dx = \left(\frac{x}{4} - \frac{\sin{\left(2 x \right)}}{8}\right) + C$$$A