Integral de $$$\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}\, d\theta$$$.
Solução
Reescreva o integrando utilizando a fórmula do ângulo duplo $$$\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1}{2}\sin\left( 2 \theta \right)$$$:
$${\color{red}{\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 \theta \right)}}{4} d \theta}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(\theta \right)} = \sin^{2}{\left(2 \theta \right)}$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(2 \theta \right)}}{4} d \theta}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 \theta \right)} d \theta}}{4}\right)}}$$
Aplique a fórmula de redução de potência $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ com $$$\alpha=2 \theta$$$:
$$\frac{{\color{red}{\int{\sin^{2}{\left(2 \theta \right)} d \theta}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 \theta \right)}}{2}\right)d \theta}}}}{4}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(\theta \right)} = 1 - \cos{\left(4 \theta \right)}$$$:
$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 \theta \right)}}{2}\right)d \theta}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 \theta \right)}\right)d \theta}}{2}\right)}}}{4}$$
Integre termo a termo:
$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 \theta \right)}\right)d \theta}}}}{8} = \frac{{\color{red}{\left(\int{1 d \theta} - \int{\cos{\left(4 \theta \right)} d \theta}\right)}}}{8}$$
Aplique a regra da constante $$$\int c\, d\theta = c \theta$$$ usando $$$c=1$$$:
$$- \frac{\int{\cos{\left(4 \theta \right)} d \theta}}{8} + \frac{{\color{red}{\int{1 d \theta}}}}{8} = - \frac{\int{\cos{\left(4 \theta \right)} d \theta}}{8} + \frac{{\color{red}{\theta}}}{8}$$
Seja $$$u=4 \theta$$$.
Então $$$du=\left(4 \theta\right)^{\prime }d\theta = 4 d\theta$$$ (veja os passos »), e obtemos $$$d\theta = \frac{du}{4}$$$.
A integral torna-se
$$\frac{\theta}{8} - \frac{{\color{red}{\int{\cos{\left(4 \theta \right)} d \theta}}}}{8} = \frac{\theta}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{\theta}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{\theta}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{\theta}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{\theta}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$
Recorde que $$$u=4 \theta$$$:
$$\frac{\theta}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{\theta}{8} - \frac{\sin{\left({\color{red}{\left(4 \theta\right)}} \right)}}{32}$$
Portanto,
$$\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}$$
Adicione a constante de integração:
$$\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}+C$$
Resposta
$$$\int \sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}\, d\theta = \left(\frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}\right) + C$$$A