Ολοκλήρωμα του $$$\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}\, d\theta$$$.

Λύση

Επαναγράψτε την ολοκληρωτέα χρησιμοποιώντας τον τύπο διπλής γωνίας $$$\sin\left(\theta \right)\cos\left(\theta \right)=\frac{1}{2}\sin\left( 2 \theta \right)$$$:

$${\color{red}{\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta}}} = {\color{red}{\int{\frac{\sin^{2}{\left(2 \theta \right)}}{4} d \theta}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(\theta \right)} = \sin^{2}{\left(2 \theta \right)}$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(2 \theta \right)}}{4} d \theta}}} = {\color{red}{\left(\frac{\int{\sin^{2}{\left(2 \theta \right)} d \theta}}{4}\right)}}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ με $$$\alpha=2 \theta$$$:

$$\frac{{\color{red}{\int{\sin^{2}{\left(2 \theta \right)} d \theta}}}}{4} = \frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 \theta \right)}}{2}\right)d \theta}}}}{4}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(\theta \right)} = 1 - \cos{\left(4 \theta \right)}$$$:

$$\frac{{\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(4 \theta \right)}}{2}\right)d \theta}}}}{4} = \frac{{\color{red}{\left(\frac{\int{\left(1 - \cos{\left(4 \theta \right)}\right)d \theta}}{2}\right)}}}{4}$$

Ολοκληρώστε όρο προς όρο:

$$\frac{{\color{red}{\int{\left(1 - \cos{\left(4 \theta \right)}\right)d \theta}}}}{8} = \frac{{\color{red}{\left(\int{1 d \theta} - \int{\cos{\left(4 \theta \right)} d \theta}\right)}}}{8}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, d\theta = c \theta$$$ με $$$c=1$$$:

$$- \frac{\int{\cos{\left(4 \theta \right)} d \theta}}{8} + \frac{{\color{red}{\int{1 d \theta}}}}{8} = - \frac{\int{\cos{\left(4 \theta \right)} d \theta}}{8} + \frac{{\color{red}{\theta}}}{8}$$

Έστω $$$u=4 \theta$$$.

Τότε $$$du=\left(4 \theta\right)^{\prime }d\theta = 4 d\theta$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$d\theta = \frac{du}{4}$$$.

Το ολοκλήρωμα γίνεται

$$\frac{\theta}{8} - \frac{{\color{red}{\int{\cos{\left(4 \theta \right)} d \theta}}}}{8} = \frac{\theta}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{\theta}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{\theta}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\theta}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{\theta}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{32}$$

Θυμηθείτε ότι $$$u=4 \theta$$$:

$$\frac{\theta}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{\theta}{8} - \frac{\sin{\left({\color{red}{\left(4 \theta\right)}} \right)}}{32}$$

Επομένως,

$$\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)} d \theta} = \frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}+C$$

Απάντηση

$$$\int \sin^{2}{\left(\theta \right)} \cos^{2}{\left(\theta \right)}\, d\theta = \left(\frac{\theta}{8} - \frac{\sin{\left(4 \theta \right)}}{32}\right) + C$$$A


Please try a new game Rotatly