Integral de $$$\ln\left(- 5 x\right)$$$

A calculadora encontrará a integral/antiderivada de $$$\ln\left(- 5 x\right)$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \ln\left(- 5 x\right)\, dx$$$.

Solução

Seja $$$u=- 5 x$$$.

Então $$$du=\left(- 5 x\right)^{\prime }dx = - 5 dx$$$ (veja os passos »), e obtemos $$$dx = - \frac{du}{5}$$$.

Assim,

$${\color{red}{\int{\ln{\left(- 5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{5}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{1}{5}$$$ e $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$${\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{5}\right)}}$$

Para a integral $$$\int{\ln{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Sejam $$$\operatorname{m}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.

Então $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (os passos podem ser vistos »).

Assim,

$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{5}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{5}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{5}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$- \frac{u \ln{\left(u \right)}}{5} + \frac{{\color{red}{\int{1 d u}}}}{5} = - \frac{u \ln{\left(u \right)}}{5} + \frac{{\color{red}{u}}}{5}$$

Recorde que $$$u=- 5 x$$$:

$$\frac{{\color{red}{u}}}{5} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{5} = \frac{{\color{red}{\left(- 5 x\right)}}}{5} - \frac{{\color{red}{\left(- 5 x\right)}} \ln{\left({\color{red}{\left(- 5 x\right)}} \right)}}{5}$$

Portanto,

$$\int{\ln{\left(- 5 x \right)} d x} = x \ln{\left(- 5 x \right)} - x$$

Simplifique:

$$\int{\ln{\left(- 5 x \right)} d x} = x \left(\ln{\left(- x \right)} - 1 + \ln{\left(5 \right)}\right)$$

Adicione a constante de integração:

$$\int{\ln{\left(- 5 x \right)} d x} = x \left(\ln{\left(- x \right)} - 1 + \ln{\left(5 \right)}\right)+C$$

Resposta

$$$\int \ln\left(- 5 x\right)\, dx = x \left(\ln\left(- x\right) - 1 + \ln\left(5\right)\right) + C$$$A


Please try a new game Rotatly