$$$\ln\left(- 5 x\right)$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\ln\left(- 5 x\right)$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \ln\left(- 5 x\right)\, dx$$$.

Çözüm

$$$u=- 5 x$$$ olsun.

Böylece $$$du=\left(- 5 x\right)^{\prime }dx = - 5 dx$$$ (adımlar » görülebilir) ve $$$dx = - \frac{du}{5}$$$ elde ederiz.

İntegral şu hale gelir

$${\color{red}{\int{\ln{\left(- 5 x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{5}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=- \frac{1}{5}$$$ ve $$$f{\left(u \right)} = \ln{\left(u \right)}$$$ ile uygula:

$${\color{red}{\int{\left(- \frac{\ln{\left(u \right)}}{5}\right)d u}}} = {\color{red}{\left(- \frac{\int{\ln{\left(u \right)} d u}}{5}\right)}}$$

$$$\int{\ln{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$ kullanın.

$$$\operatorname{m}=\ln{\left(u \right)}$$$ ve $$$\operatorname{dv}=du$$$ olsun.

O halde $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{1 d u}=u$$$ (adımlar için bkz. »).

İntegral şu hale gelir

$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{5}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{5}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{5}$$

$$$c=1$$$ kullanarak $$$\int c\, du = c u$$$ sabit kuralını uygula:

$$- \frac{u \ln{\left(u \right)}}{5} + \frac{{\color{red}{\int{1 d u}}}}{5} = - \frac{u \ln{\left(u \right)}}{5} + \frac{{\color{red}{u}}}{5}$$

Hatırlayın ki $$$u=- 5 x$$$:

$$\frac{{\color{red}{u}}}{5} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{5} = \frac{{\color{red}{\left(- 5 x\right)}}}{5} - \frac{{\color{red}{\left(- 5 x\right)}} \ln{\left({\color{red}{\left(- 5 x\right)}} \right)}}{5}$$

Dolayısıyla,

$$\int{\ln{\left(- 5 x \right)} d x} = x \ln{\left(- 5 x \right)} - x$$

Sadeleştirin:

$$\int{\ln{\left(- 5 x \right)} d x} = x \left(\ln{\left(- x \right)} - 1 + \ln{\left(5 \right)}\right)$$

İntegrasyon sabitini ekleyin:

$$\int{\ln{\left(- 5 x \right)} d x} = x \left(\ln{\left(- x \right)} - 1 + \ln{\left(5 \right)}\right)+C$$

Cevap

$$$\int \ln\left(- 5 x\right)\, dx = x \left(\ln\left(- x\right) - 1 + \ln\left(5\right)\right) + C$$$A


Please try a new game Rotatly