Integral de $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.

Solução

Reescreva em termos da cotangente:

$${\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$

Seja $$$u=\cot{\left(x \right)}$$$.

Então $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\csc^{2}{\left(x \right)} dx = - du$$$.

Portanto,

$${\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:

$${\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$

Reescreva e separe a fração:

$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$

Integre termo a termo:

$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

Recorde que $$$u=\cot{\left(x \right)}$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$

Portanto,

$$\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$

Adicione a constante de integração:

$$\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$

Resposta

$$$\int \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A


Please try a new game Rotatly