Funktion $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx$$$.
Ratkaisu
Kirjoita uudelleen kotangentin avulla:
$${\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\cot^{2}{\left(x \right)} d x}}}$$
Olkoon $$$u=\cot{\left(x \right)}$$$.
Tällöin $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\csc^{2}{\left(x \right)} dx = - du$$$.
Näin ollen,
$${\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=-1$$$ ja $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$${\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Kirjoita murtolauseke uudelleen ja jaa se osamurtoihin:
$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integroi termi kerrallaan:
$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Sovella vakiosääntöä $$$\int c\, du = c u$$$ käyttäen $$$c=1$$$:
$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
Funktion $$$\frac{1}{u^{2} + 1}$$$ integraali on $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
Muista, että $$$u=\cot{\left(x \right)}$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$
Näin ollen,
$$\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$
Lisää integrointivakio:
$$\int{\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$
Vastaus
$$$\int \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A