Integral de $$$\frac{x}{3}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{x}{3}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x}{3}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{3}$$$ e $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{\frac{x}{3} d x}}} = {\color{red}{\left(\frac{\int{x d x}}{3}\right)}}$$

Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$\frac{{\color{red}{\int{x d x}}}}{3}=\frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{3}=\frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{3}$$

Portanto,

$$\int{\frac{x}{3} d x} = \frac{x^{2}}{6}$$

Adicione a constante de integração:

$$\int{\frac{x}{3} d x} = \frac{x^{2}}{6}+C$$

Resposta

$$$\int \frac{x}{3}\, dx = \frac{x^{2}}{6} + C$$$A


Please try a new game Rotatly