Integral de $$$\frac{1}{8 x^{9}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{8 x^{9}}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{8}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{9}}$$$:
$${\color{red}{\int{\frac{1}{8 x^{9}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{9}} d x}}{8}\right)}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-9$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{9}} d x}}}}{8}=\frac{{\color{red}{\int{x^{-9} d x}}}}{8}=\frac{{\color{red}{\frac{x^{-9 + 1}}{-9 + 1}}}}{8}=\frac{{\color{red}{\left(- \frac{x^{-8}}{8}\right)}}}{8}=\frac{{\color{red}{\left(- \frac{1}{8 x^{8}}\right)}}}{8}$$
Portanto,
$$\int{\frac{1}{8 x^{9}} d x} = - \frac{1}{64 x^{8}}$$
Adicione a constante de integração:
$$\int{\frac{1}{8 x^{9}} d x} = - \frac{1}{64 x^{8}}+C$$
Resposta
$$$\int \frac{1}{8 x^{9}}\, dx = - \frac{1}{64 x^{8}} + C$$$A