Intégrale de $$$\frac{1}{8 x^{9}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{8 x^{9}}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{8}$$$ et $$$f{\left(x \right)} = \frac{1}{x^{9}}$$$ :
$${\color{red}{\int{\frac{1}{8 x^{9}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{9}} d x}}{8}\right)}}$$
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=-9$$$ :
$$\frac{{\color{red}{\int{\frac{1}{x^{9}} d x}}}}{8}=\frac{{\color{red}{\int{x^{-9} d x}}}}{8}=\frac{{\color{red}{\frac{x^{-9 + 1}}{-9 + 1}}}}{8}=\frac{{\color{red}{\left(- \frac{x^{-8}}{8}\right)}}}{8}=\frac{{\color{red}{\left(- \frac{1}{8 x^{8}}\right)}}}{8}$$
Par conséquent,
$$\int{\frac{1}{8 x^{9}} d x} = - \frac{1}{64 x^{8}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{8 x^{9}} d x} = - \frac{1}{64 x^{8}}+C$$
Réponse
$$$\int \frac{1}{8 x^{9}}\, dx = - \frac{1}{64 x^{8}} + C$$$A